Endri Dibra1, Himanshu Jain1, Cengiz Öztireli1, Remo Ziegler2, Markus Gross1
1Department of Computer Science, ETH Zürich 2Vizrt
We represent human body shape estimation from binary silhouettes or shaded images as a regression problem, and describe a novel method to tackle it using CNNs. Utilizing a parametric body model, we train CNNs to learn a global mapping from the input to shape parameters used to reconstruct the shapes of people, in neutral poses, with the application of garment fitting in mind. This results in an accurate, robust and automatic system, orders of magnitude faster than methods we compare to, enabling interactive applications. In addition, we show how to combine silhouettes from two views to improve prediction over a single view. The method is extensively evaluated on thousands of synthetic shapes and real data and compared to state of-art approaches, clearly outperforming methods based on global fitting and strongly competing with more expensive local fitting based ones.
Links:
PDF Project page Supplementary